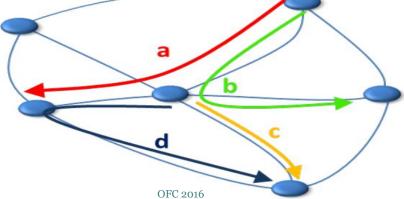
Estimating QoT of Unestablished Lightpaths

I. Sartzetakis^{1,2}, K. Christodoulopoulos^{1,2}, C. P. Tsekrekos³, D. Syvridis⁴, E. Varvarigos^{1,2} Tu3F.2

¹CTI, GR ²EE, NTUA, GR ³Aston Un., UK ⁴DI, NKUA, GR

Outline


- Motivation
- Network model and QoT estimation
- Interference Aware QoT estimation
- Results
- Conclusion

Motivation

- In Optical Transport Networks lightpaths accumulate impairments
- Bit error ration (BER)/Quality of Transmission (QoT) metrics determine whether a lightpath is acceptable or not
- Traditional lightpaths provisioning use abundant margins to account for
 - equipment ageing
 - increased interference due to future added lightpaths
- High margins require regenerators and/or more robust transceivers
 Significant savings can be achieved by lowering the margins
- Lowering the margins requires accurate estimation of the QoT:
 - before provisioning new lightpaths & to anticipate the QoT problems
- Accurate QoT estimation can also be used to optimize dynamic reconfiguration action in emerging dynamic optical networks

Contribution

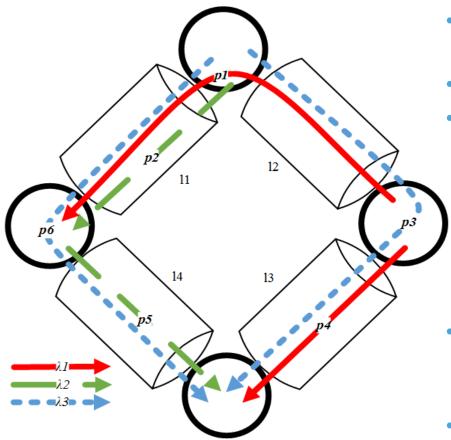
- We develop a framework that correlates monitoring information from established lightpaths to estimate
 - the QoT (BER) of a new lightpath before it is established
 - the degradation the new lightpath will cause to existing ones
- Our estimation framework
 - takes into account the network utilization state, not assuming worst channel interference (as previous approaches did)
 - targets multi-rate WDM networks and can be expanded to support elastic networks

Network model

Optical network

- Dispersion uncompensated links
- Coherent receivers that function as Optical Performance Monitors (OPM)
 - OPMs are located at the termination of all or some lightpaths

OPM provides information about the SNR of the lightpath


- SNR: accounts for all impairments, such as Amplified Spontaneous Emission (ASE), residual dispersion (Chromatic, Polarization mode), and Non Linear Impairments (NLI)
- The BER can be calculated based on the SNR value

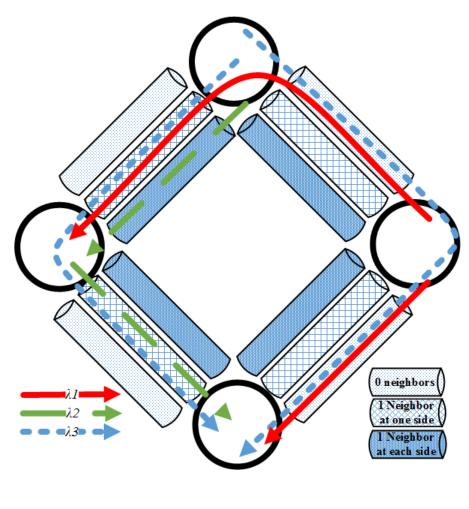
Framework's assumptions

- Assumption: the inverse of SNR is additive per link
 - This assumption is also used in the GN model (*)
- To validate our framework we use the GN model before and after the establishment of a new lightpath:
 - Before: to get measurements of the established lightpaths SNRs
 - After: to check the accuracy of the estimation
- The estimation framework does not depend on the GN model
 - The GN model is used as the ground truth (because it is fast)
 - Real values from OPMs would be used in a real network

* P. Poggiolini, et al, "A detailed analytical derivation of the GN model of non-linear interference in coherent optical transmission systems," arXiv:1209.0394 (2012)

Estimating end-to-end parameters

 $\lambda_{1,\lambda_{2,\lambda_{3}}}$: represent adjacent wavelengths

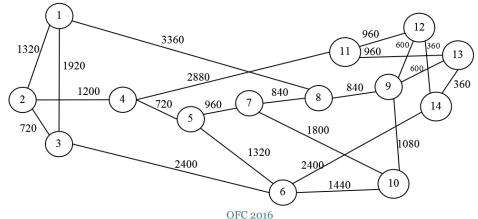

- $G \{0,1\}^{P \times L}$: Routing matrix of lightpaths $G_{p,F}=1$ when lightpath p uses link I
- **x**: vector of *link-level* parameters (unknown)
- y: vector of *end-to-end* parametersy is a linear combination of x

 $[\mathbf{y}'_{\mathrm{m}}\mathbf{y}'_{\mathrm{n}}] = [G'_{\mathrm{m}}G'_{\mathrm{n}}]\mathbf{x},$

where m represents the lightpaths for which monitoring data is available, and n the new lightapth(s) whose parameter should be estimated (assuming known routing G_n)

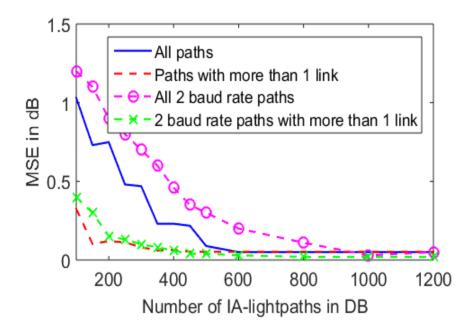
- Estimating the unknown y'_n can be done using Network Kriging (NK) or Norm Minimization (NM)
- Parameter: 1/SNR

Interference Aware QoT estimation


- The previous notation does not take into account the interference
- To do so we construct a new interference aware graph (IA-graph)
- We assume that lightpaths that have the same number and position of neighbors exhibit equal interference
- Every link is replaced by Interference Aware links (IA-links) that represent
 - the number and position of the neighboring channels
 - the baud-rate (in case of multi-baudrate networks)
- The lightpaths are rerouted depending on their neighbors on each link

Interference Aware QoT estimation

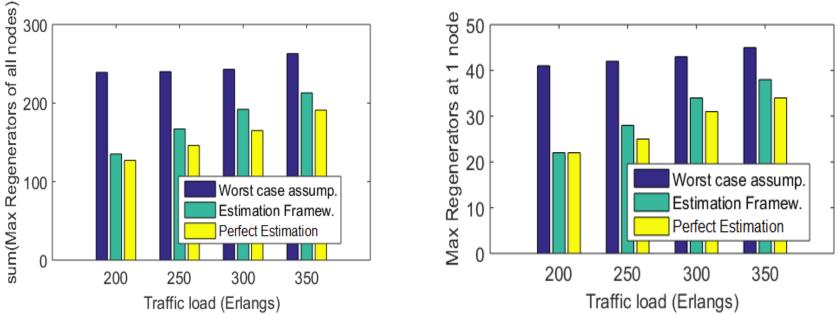
- We run NK or NM on the interference aware (IA)-graph, so that the calculated SNR (and BER afterwards) takes into account interference
- The columns of routing matrix G represent the IA-links, while vector y (the end-to-end parameters) is not changed
- We assumed 2 neighbors from each side, since they contribute the most to the interference
- We use a database (DB) to store past measurement data
 - Store the end-to-end values (SNR), along with the IA-links that were used
- Our framework can estimate how the new lightpath affects the previous established ones
 - The insertion of the new lightpath changes the IA-links used by some existing lightpaths
 - We use our estimation framework to calculate the QoT of these lightpaths


Performance results

- We evaluate the accuracy of the estimation and then we translate that into savings of regenerators
- NSFNET topology
- 100G PM-QPSK with (i) 28 Gbaud and (ii) 28 and 32Gbaud
- Poisson lightpath arrivals with exponential duration
- Database keeps monitored values and is updated when new lightpaths are established
- We obtain the BER estimate for every new lightpath and then compare it to the value that the GN model provides

Estimation accuracy

- Error decreases as DB size increases
- Large errors occur mainly at single link lightpaths, so are negligible
- DB fills very quickly: a single lightpath establishment creates many entries, since it affects the IA-links of many existing lightpaths
 - 600 IA-lightpaths translate to ~170 lightpaths in the original network



- Maximum underestimation: 0.1dB (1000 IA-lightpaths & 1 baud-rate)
- Maximum underestimation is used as a margin

Regenerators savings (1/2)

- Regenerator savings: the following scenarios are compared
 - Estimation framework: use the framework to estimate the QoT and provision lightpaths with actual margins
 - Perfect estimation: establish lightpaths, measure the QoT and then install regens
 - Worst case assumption: provision lightpaths with worst case interference margins
- A regenerator is placed whenever the BER is larger than the predefined threshold (10⁻² before FEC)
- Our estimation framework can provide up to 4.10⁻² (1.4 dB) lower BER estimations when compared to the worst case assumption (taking into account the 0.1dB margin used for the estimation error)

Regenerators savings (2/2)

- Our estimation framework requires
 - up to 47% less regenerators than the worst case scenario,
 - only up to 5% more than the perfect estimation case
- As the network load increases, more lightpaths are concurrently active and thus interference increases and QoT becomes equal to the worst case scenario

13

Conclusion

- We presented a novel framework that takes into account the interference of neighboring channels to provide an accurate QoT estimation for the establishment of new lightpaths
- The framework was shown to provide quite accurate QoT estimations
- Accurate estimation can increase the network efficiency, enabling network operation with reduced margins, closer to current conditions, and can also enable optimized dynamic reconfiguration actions
 - We showed that using the estimations can lead to significant regeneration savings compared to provisioning under worst case assumptions
- Future work includes the support for elastic networks and the estimation under measurement uncertainties

vmanos@central.ntua.gr

15

OFC 2016

Backup slides

Network scenario

- New lightpath (or a batch of lightpaths) to be established
- RWA: shortest path and first available wavelength
- For a candidate path-wavelength we use the framework
 - To estimate the QoT before it is established under current network conditions (ageing & interference)
 - To estimate the interference effect to established lightpaths
 - If the QoT of the candidate path-wavelength is infeasible or using that turns infeasible some established lightpath
 - we examine the next free wavelength
 - If there is no more free wavelength, a regenerator is placed at an intermediate node